4123:1-3-08 Ropes, chains and slings.

(A) Reserved.
(B) Reserved.
(C) General requirements.
(1) Working loads.

Ropes, chains and slings shall not be used for loads in excess of the working loads specified in "Tables 8-1 through 8-20." in excess of their safe working load.
(2) Factor of safety - component parts.

All connections, fittings, fastenings, parts, etc., used in connection with manila ropes, wire ropes or chains shall be of such quality and strength and so attached, connected, fastened, etc., as to provide a factor of safety of no less than the carrying agent for which they are designed.
(3) Limitation on wire rope.

Haulage rope shall not be provided for use as a hoisting rope.
(4) Clearance.

The ratio between the rope diameter and the block, sheave or pulley tread diameter shall be such as to allow the rope strands to slide past each other and adjust themselves to the bend. In no case shall the sheave diameter be less than that recommended in the manufacturer's specifications for corresponding block, sheave and pulley diameters. Sheaves or pulleys with eccentric bores or with cracked hubs, spokes or flanges shall be repaired or removed from service.
(5) Protection.

Where manila rope or wire rope is used to support equipment and is brought over a sharp corner of steel, stone or other material liable to cut or cause undue abrasion to the manila rope or wire rope, it shall be protected at such points by the use of bagging, wooden blocks or other protective padding.
(6) Manila rope prohibited.

Manila rope slings shall not be used for handling known acid- or causticcontaminated material or objects.
(7) Use of chain prohibited.

The use of chain as a sling or choker in erection of steel is prohibited.
(D) Alloy steel chains.
(1) Welded alloy steel chain slings shall have permanently affixed durable identification stating size, grade, rated capacity, and sling manufacturer.
(2) Hooks, rings, oblong links, pear-shaped links, welded or mechanical coupling links, or other attachments, when used with alloy steel chains, shall have a rated capacity at least equal to that of the chain.
(3) Job or shop hooks and links, makeshift fasteners, made from bolts, rods, etc., or other such attachments shall not be used.
(4) Rated capacity (working load limit) for alloy steel chain slings shall conform to the values shown in "Table 8-1."
(5)(4) Whenever wear at any point of any chain link exceeds that shown in "Table-8$z, \underline{8-1, "}$ the assembly shall be removed from service.

TABLE 8-1.
RATED CAPACITY (WORKING LOAD LIMIT), FOR ALLOY STEEL CHAIN SLINGS*
RATED CAPACITY (WORKING LOȦD LIMIT), POUNDS

Chain Size, Inches	Single Branch Sling 90 degree Loading	Double Sling Vertical Angle (1)			Triple and Quadruple Sling Vertical Angle (1)		
		Horizontal Angle (2)			Horizontal Angle (2)		
		60 degree	45 degree	30 degree	60 degree	45 degree	30 degree
1/4	3,250	5,560	4,550	3,250	8,400	6,800	4,900
3/8	6,600	11,400	9,300	6,600	17,000	14,000	9,900
1/2	11,250	19,500	15,900	11,250	29,000	24,000	17,000
5/8	16,500	28,500	23,300	16,500	43,000	35,000	24,500
$3 / 4$	23,000	39,800	32,500	23,000	59,500	48,500	34,500
7/8	28,750	49,800	40,600	28,750	74,500	61,000	43,000
1	38,750	67,100	54,800	38,750	101,000	82,000	58,000
1-1/8	44,500	77,000	63,000	44,500	115,500	94,500	66,500
1-1/4	57,500	99,500	81,000	57,500	149,000	121,500	86,000
1-3/8	67,000	116,000	94,000	67,000	174,000	141,000	100,500
1-1/2	80,000	138,000	112,500	80,000	207,000	169,000	119,500
1-3/4	100,000	172,000	140,000	100,000	258,000	210,000	150,000

[^0]
Rename TABLE 82 to TABLE 8-1

TABLE 8-2.
MAXIMUM ALLOWABLE WEAR AT ANY POINT OF LINK

$\begin{aligned} & \text { Chain } \\ & \text { size } \\ & \text { (inches) } \end{aligned}$	Maximum allowable wear (inch)	Chain size (inches)	Maximum allowable wear (inch)
$1 / 4$	3/64	1	3/16
3/8	5/64	$11 / 8$	7/32
1/2	7/64	11/4	. $1 / 4$
5/8	. 9/64	$13 / 8$	9/32
$3 / 4$	5/32	$11 / 2$. 5/16
7/8	. 11/64	$13 / 4$. $11 / 32$

(E) Wire rope.
(1) "Tables 8-3 through 8-14" shall be used to determine the safe working loads of various sizes and classifications of improved plow steel wire rope and wire rope slings with various types of terminals. For sizes, classifications, and grades not included in these tables, the safe working load recommended by the mantuacturer for speeific, identifiable products shall be followed, provided that a factor of safety of no less than five is maintained. Employers must not use improved plow-steel wire rope and wire-rope slings with loads in excess of the rated capacities (i.e., working load limits) indicated on the sling by permanently affixed and legible identification markings prescribed by the manufacturer.
(2) Protruding ends of strands in splices on slings and bridles shall be covered or blunted.
(3) Wire rope shall not be secured by knots, except on haul-back lines of scrapers.
(4) The following limitations shall apply to the use of wire rope:
(a) An eye splice made in any wire rope shall have no less than three full tucks. However, this requirement shall not operate to preclude the use of another form of splice or connection which can be shown to be as safe and which is not otherwise prohibited.
(b) Except for eye splices in the ends of wires and for endless rope slings, each wire rope used in hoisting or lowering, or in pulling loads, shall consist of one continuous piece without knot or splice.
(c) Eyes in wire rope bridles, slings, or bull wires shall not be formed by wire rope clips or knots.
(d) Wire rope shall not be used if, in any length of eight diameters, the total number of visible broken wires exceeds ten per cent of the total number of wires, or if the rope shows other signs of excessive wear, corrosion or defect.

TABLE 8-3.
RATED CAPACITIES FOR SINGLE LEG SLINGS
6×19 \& 6×37 CLASSIFICATION IMPROVED PLOW STEEL GRADE ROPE
WITH FIBER CORE (FC)

Rope		Rated Capacities, Tons (2,000 lb)								
$\begin{gathered} \text { Dio } \\ \text { (Inches) } \end{gathered}$	Constr	HT	Vertical MS	S	HT	Choker MS	S	Verti HT	MS	${ }^{\text {* }}$ S
1/4	6×19	0.49	0.51	0.55	0.37	0.38	0.41	0.99	1.0	1.1
5/16	6×19	0.76	0.79	0.85	0.57	0.59	0.64	1.5	1.6	1.7
3/8	6×19	1.1	1.1	1.2	0.80	0.85	0.91	2.1	2.2	2.4
7/16	6×19	1.4	1.5	1.6	1.1	1.1	1.2	2.9	3.0	3.3
1/2	6×19	1.8	2.0	2.1	1.4	1.5	1.6	3.7	3.9	4.3
9/16	6×19	2.3	2.5	2.7	1.7	1.9	2.0	4.6	5.0	5.4
$5 / 8$	6×19	2.8	3.1	3.3	2.1	2.3	2.5	5.6	6.2	6.7
3/4	6×19	3.9	4.4	4.8	2.9	3.3	3.6	7.8	8.8	9.5
7/8	6×19	5.1	5.9	6.4	3.9	4.5	4.8	10.0	12.0	13.0
1	6×19	6.7	7.7	8.4	5.0	5.8	6.3	13.0	15.0	17.0
1-1/8	6×19	8.4	9.5	10.0	6.3	7.1	7.9	17.0	19.0	21.0
1-1/4	6×37	9.8	11.0	12.0	7.4	8.3	9.2	20.0	22.0	25.0
1-3/8	6×37	12.0	13.0	15.0	8.9	10.0	11.0	24.0	27.0	30.0
1-1/2	6×37	14.0	16.0	17.0	10.0	12.0	13.0	28.0	32.0	35.0
1-5/8	6×37	16.0	18.0	21.0	12.0	14.0	15.0	33.0	37.0	41.0
1-3/4	6×37	19.0	21.0	24.0	14.0	16.0	18.0	38.0	43.0	48.0
2	6×37	25.0	28.0	31.0	18.0	21.0	23.0	49.0	55.0	62.0

HT $=$ Hand Tucked Splice and Hidden Tuck Splice
For hidden tuck splice (IWRC) use values in HT columns.
MS = Mechanical Splice
$S=$ Swaged or Zinc Poured Socket

* These values only apply when the D/d ratio for HT slings is 10 or greater, and for MS and S slings is 20 or greater where:
$\mathrm{D}=$ Diameter of curvature around which the body of the sling is bent.
$\mathrm{d}=$ Diameter of rope.

TABLE 8-4.
RATED CAPACITIES FOR SINGLE LEG SLINGS
$6 \times 19 \& 6 \times 37$ CLASSIFICATION IMPROVED PLOW STEEL GRADE ROPE
WITH INDEPENDENT WIRE ROPE CORE (IWRC)

Rope		Rated Capacition, Tons (2.000 lb)								
Dia (Inches)	Constr	HT	Vertical MS	\mathbf{S}	HT	Choker MS	S	Vert HT	$\begin{aligned} & 1 \text { Bas] } \\ & \text { MS } \end{aligned}$	*
1/4	6×19	0.53	0.56	0.59	0.40	0.42	0.44	1.0	1.1	1.2
5/16	6×19	0.81	0.87	0.92	0.61	0.65	0.69	1.6	1.7	1.8
3/8	6×19	1.1	1.2	1.3	0.86	0.93	0.98	2.3	2.5	2.6
7/16	6×19	1.5	1.7	1.8	1.2	1.3	1.3	3.1	3.4	3.5
1/2	6×19	2.0	2.2	2.3	1.5	1.6	1.7	3.9	4.4	4.6
9/16	6×19	2.5	2.7	2.9	1.8	2.1	2.2	4.9	5.5	5.8
5/8	6×19	3.0	3.4	3.6	2.2	2.5	2.7	6.0	6.8	7.2
$3 / 4$	6×19	4.2	4.9	5.1	3.1	3.6	3.8	8.4	9.7	10.0
$7 / 8$	6×19	5.5	6.6	6.9	4.1	4.9	5.2	11.0	13.0	14.0
1	6×19	7.2	8.5	9.0	5.4	6.4	6.7	14.0	17.0	18.0
1-1/8	6×19	9.0	10.0	11.0	6.8	7.8	8.5	18.0	21.0	23.0
1-1/4	6×37	10.0	12.0	13.0	7.9	9.2	9.9	21.0	24.0	26.0
1-3/8	6×37	13.0	15.0	16.0	9.6	11.0	12.0	25.0	29.0	32.0
1-1/2	6×37	15.0	17.0	19.0	11.0	13.0	14.0	30.0	35.0	38.0
1-5/8	6×37	18.0	20.0	22.0	13.0	15.0	17.0	35.0	41.0	44.0
1-3/4	6×37	20.0	24.0	26.0	15.0	18.0	19.0	41.0	47.0	51.0
2	6×37	26.0	30.0	33.0	20.0	23.0	25.0	53.0	61.0	66.0

HT $=\underset{ }{\text { For hidden tuck splice }}$
MS = Mechanical Splice.
S = Swaged or Zinc Poured Socket.
S = These
values
$\mathrm{D}=$ Diameter of curvature around which the body of the sling is bent.
$\mathrm{d}=$ Diameter of rope.

TABLE 8-5.
RATED CAPACITIES FOR SINGLE LEG SLINGS
CABLE LAID ROPE - MECHANICAL SPLICE ONLY $7 \mathrm{x} 7 \mathrm{x} 7 \& 7 \mathrm{x} 7 \mathrm{x} 19$ CONSTRUCTIONS GALVANIZED AIRCRAFT GRADE ROPE
7x6x19 IWRC CONSTRUCTION IMPROVED PLOW STEEL GRADE ROPE

Rope		Rated Capacities, Tons (2,000 lb)		
Dia (Inches)	Constr			
$1 / 4$	$7 \times 7 \times 7$	Vertical	Choker	Vertical Basket*
$3 / 8$	$7 \times 7 \times 7$	0.5	0.38	1.0
$1 / 2$	$7 \times 7 \times 7$	1.1	0.81	2.0
$5 / 8$	$7 \times 7 \times 7$	1.8	1.4	3.7
$3 / 4$	$7 \times 7 \times 7$	2.8	2.1	5.5
$5 / 8$	$7 \times 7 \times 19$	3.8	2.9	7.6
$3 / 4$	$7 \times 7 \times 19$	2.9	2.2	5.8
$7 / 8$	$7 \times 7 \times 19$	4.1	3.0	8.1
1	$7 \times 7 \times 19$	5.4	4.0	11.0
$1-1 / 8$	$7 \times 7 \times 19$	6.9	5.1	14.0
$1-1 / 4$	$7 \times 7 \times 19$	8.2	6.2	16.0
$3 / 4$	$7 \times 6 \times 19$ IWRC	9.9	7.4	20.0
$7 / 8$	$7 \times 6 \times 19$ IWRC	3.8	2.8	7.6
1	$7 \times 6 \times 19$ IWRC	5.0	3.8	10.0
$1-1 / 8$	$7 \times 6 \times 19$ IWRC	6.4	4.8	13.0
$1-1 / 4$	$7 \times 6 \times 19$ IWRC	7.7	5.8	15.0
$1-5 / 16$	$7 \times 6 \times 19$ IWRC	9.2	6.9	18.0
$1-3 / 8$	$7 \times 6 \times 19$ IWRC	10.0	7.5	20.0
$1-1 / 2$	$7 \times 6 \times 19$ IWRC	11.0	8.2	22.0

*These values only apply when the $D / / d$ ratio is 10 or greater where:
D = Diameter of curvature around which the body of the sling is bent.
d = Diameter of rope.

TABLE 8-6.
RATED CAPACITIES FOR SINGLE LEG SLINGS 8-PART AND 6-PART BRAIDED ROPE
$6 \times 7 \& 6 x 19$ CONSTRUCTION IMPROVED PLOW STEEL GRADE ROPE 7×7 CONSTRUCTION GALVANIZED AIRCRAFT GRADE ROPE

Component Ropes		Rated Capacities, Tons (2.000 lb)					
$\begin{gathered} \text { Dia } \\ \text { (Inches) } \end{gathered}$	Constr	Vertical		Choker		Basket. Vertical to 30 degree*	
		8-Part	6-Part	8-Part	6-Part	8-Part	6-Part
3/32	6×7	0.42	0.32	0.32	0.24	0.74	0.55
1/8	6×7	0.76	0.57	0.57	0.42	1.3	0.98
3/16	6×7	1.7	1.3	1.3	0.94	2.9	2.2
3/32	7×7	0.51	0.39	0.38	0.29	0.89	0.67
1/8	7×7	0.95	0.71	0.71	0.53	1.6	1.2
3/16	7×7	2.1	1.5	1.5	1.2	3.6	2.7
3/16	6×19	1.7	1.3	1.3	0.98	3.0	2.2
1/4	6×19	3.1	2.3	2.3	1.7	5.3	4.0
5/16	6×19	4.8	3.6	3.6	2.7	8.3	6.2
3/8	6×19	6.8	5.1	5.1	3.8	12.0	8.9
7/16	6×19	9.3	6.9	6.9	5.2	16.0	12.0
1/2	6×19	12.0	9.0	9.0	6.7	21.0	15.0
9/16	6×19	15.0	11.0	11.0	8.5	26.0	20.0
$5 / 6$	6×19	19.0	14.0	14.0	10.0	32.0	24.0
3/4	6×19	27.0	20.0	20.0	15.0	46.0	35.0
7/8	6×19	36.0	27.0	27.0	20.0	62.0	47.0
1	6×19	47.0	35.0	35.0	26.0	81.0	61.0

*These values only apply when the $\mathrm{D} / / \mathrm{d}$ ratio is 20 or greater where:
$\mathrm{D}=$ Diameter of curvature around which the body of the sling is bent.
$\mathrm{d}=$ Diameter of component rope.

Delete TABLE 8-7.

Delete TABLE 8-8.

Delete TABLE 8-9.

Delete TABLE 810.
TABLE 8-10.
RATED CAPACITITES FOR 2-LEG AND 3-LEG BRIDLE SLINGS $6 \times 7 \& 6 \times 19$ CONSTRUCTION IMPROVED PLOW STEEL GRADE ROPE 7×7 CONSTRUCTION GALVANIZED AIRCRAFT GRADE ROPE

Component Rope		Rated Capacities. Tons (2,000 lb)											
		2-Leg Bridle Slings						3-Leg Bridle Slinge					
$\underset{\text { Dia }}{\text { (Inches) }}$	Constr	Vert 30 degree Horz 60 degree		45 degree Angle		Vert 50 degree Horz 30 degree		Vert 30 degree Horz 60 degree		45 degree Angle		Vert 60 degree Horz 30 degree	
		8 -Part	6-Part	8-Part	6-Part	8-Part	6-Part	8 -Part	6-Part	8-Part	6-Part	8 -Part	6-Part
$\begin{aligned} & 3 / 32 \\ & 1 / 8 \\ & 3 / 16 \end{aligned}$	$\begin{aligned} & 6 \times 7 \\ & 6 \times 7 \\ & 6 \times 7 \end{aligned}$	$\begin{aligned} & 0.74 \\ & 1.3 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.98 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 0.60 \\ & 1.1 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 0.45 \\ & 0.80 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 0.42 \\ & 0.76 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.57 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 2.0 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 0.83 \\ & 1.5 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 1.6 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 0.68 \\ & 1.2 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 0.64 \\ & 1.1 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.48 \\ & 0.85 \\ & 1.9 \end{aligned}$
$\begin{aligned} & 3 / 32 \\ & 1 / 8 \\ & 3 / 16 \end{aligned}$	$\begin{aligned} & 7 \times 7 \\ & 7 \times 7 \\ & 7 \times 7 \end{aligned}$	$\begin{aligned} & 0.89 \\ & 1.6 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 0.67 \\ & 1.2 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 0.72 \\ & 1.3 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 1.0 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.95 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.71 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 2.5 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.8 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 2.0 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 0.82 \\ & 1.5 \\ & 3.3 \end{aligned}$	$\begin{aligned} & 0.77 \\ & 1.4 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 0.58 \\ & 1.1 \\ & 2.3 \end{aligned}$
$\begin{aligned} & 3 / 16 \\ & 1 / 4 \\ & 5 / 16 \end{aligned}$	$\begin{aligned} & 6 \times 19 \\ & 6 \times 19 \\ & 6 \times 19 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 5.3 \\ & 8.3 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 4.0 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4.3 \\ & 6.7 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 3.2 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 3.1 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 2.3 \\ & 3.6 \end{aligned}$	4.5 8.0 12.0	$\begin{aligned} & 3.4 \\ & 6.0 \\ & 9.3 \end{aligned}$	$\begin{array}{r} 3.7 \\ 6.5 \\ 10.0 \end{array}$	$\begin{aligned} & 2.8 \\ & 4.9 \\ & 7.6 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 4.6 \\ & 7.1 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 3.4 \\ & 5.4 \end{aligned}$
$\begin{aligned} & 3 / 8 \\ & 7 / 16 \\ & 1 / 2 \end{aligned}$	$\begin{aligned} & 6 \times 19 \\ & 6 \times 19 \\ & 6 \times 19 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 16.0 \\ & 21.0 \end{aligned}$	$\begin{array}{r} 8.9 \\ 12.0 \\ 15.0 \end{array}$	$\begin{array}{r} 9.7 \\ 13.0 \\ 17.0 \end{array}$	$\begin{array}{r} 7.2 \\ 9.8 \\ 13.0 \end{array}$	$\begin{array}{r} 6.8 \\ 9.3 \\ 12.0 \end{array}$	$\begin{aligned} & 5.1 \\ & 6.9 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 24.0 \\ & 31.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 18.0 \\ & 23.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 20.0 \\ & 25.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 15.0 \\ & 19.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 14.0 \\ & 18.0 \end{aligned}$	$\begin{array}{r} 7.7 \\ 10.0 \\ 13.0 \end{array}$
$\begin{aligned} & 9 / 16 \\ & 5 / 8 \\ & 3 / 4 \end{aligned}$	$\begin{aligned} & 6 \times 19 \\ & 6 \times 19 \\ & 6 \times 19 \end{aligned}$	$\begin{aligned} & 26.0 \\ & 32.0 \\ & 46.0 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 24.0 \\ & 35.0 \end{aligned}$	$\begin{aligned} & 21.0 \\ & 26.0 \\ & 38.0 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 20.0 \\ & 28.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 19.0 \\ & 27.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 14.0 \\ & 20.0 \end{aligned}$	$\begin{aligned} & 39.0 \\ & 48.0 \\ & 69.0 \end{aligned}$	$\begin{aligned} & 29.0 \\ & 36.0 \\ & 52.0 \end{aligned}$	$\begin{aligned} & 32.0 \\ & 40.0 \\ & 56.0 \end{aligned}$	$\begin{aligned} & 24.0 \\ & 30.0 \\ & 42.0 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 28.0 \\ & 40.0 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 21.0 \\ & 30.0 \end{aligned}$
$1^{7 / 8}$	$\begin{aligned} & 6 \times 19 \\ & 6 \times 19 \end{aligned}$	$\begin{aligned} & 62.0 \\ & 81.0 \end{aligned}$	$\begin{aligned} & 47.0 \\ & 61.0 \end{aligned}$	$\begin{aligned} & 51.0 \\ & 66.0 \end{aligned}$	$\begin{aligned} & 38.0 \\ & 50.0 \end{aligned}$	$\begin{aligned} & 36.0 \\ & 47.0 \end{aligned}$	$\begin{aligned} & 27.0 \\ & 35.0 \end{aligned}$	$\begin{array}{r} 94.0 \\ 122.0 \end{array}$	$\begin{aligned} & 70.0 \\ & 91.0 \end{aligned}$	$\begin{aligned} & 76.0 \\ & 99.0 \end{aligned}$	$\begin{aligned} & 57.0 \\ & 74.0 \end{aligned}$	$\begin{aligned} & 54.0 \\ & 70.0 \end{aligned}$	$\begin{aligned} & 40.0 \\ & 53.0 \end{aligned}$

Delete TABLE 8-11.

TABLE 8-11.
RATED CAPACITIES FOR STRAND LAID GROMMET - HAND TUCKED
IMPROVED PLOW STEEL GRADE ROPE

ROPE BODY		RATED CAPACITIES, TONS (2,000 lb)		
$\underset{\text { Dia }}{\text { (Inches) }}$	Constr	Vertical		05 Vertical Basket*
$\begin{aligned} & 1 / 4 \\ & 5 / 16 \\ & 3 / 8 \end{aligned}$	$\begin{aligned} & 7 \times 19 \\ & 7 \times 19 \\ & 7 \times 19 \end{aligned}$	$\begin{aligned} & 0.85 \\ & 1.3 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 0.64 \\ & 1.0 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 2.6 \\ & 3.8 \end{aligned}$
$\begin{aligned} & 7 / 16 \\ & 1 / 2 \\ & 9 / 16 \end{aligned}$	$\begin{aligned} & 7 \times 19 \\ & 7 \times 19 \\ & 7 \times 19 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 3.3 \\ & 4.2 \end{aligned}$	1.9 2.5 3.1	$\begin{aligned} & 5.2 \\ & 6.7 \\ & 8.4 \end{aligned}$
$\begin{aligned} & 5 / 8 \\ & 3 / 4 \\ & 7 / 8 \end{aligned}$	$\begin{aligned} & 7 \times 19 \\ & 7 \times 19 \\ & 7 \times 19 \end{aligned}$	$\begin{array}{r} 5.2 \\ 7.4 \\ 10.0 \end{array}$	$\begin{aligned} & 3.9 \\ & 5.6 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 15.0 \\ & 20.0 \end{aligned}$
$\begin{aligned} & 1-1 / 8 \end{aligned}$	$\begin{aligned} & 7 \times 19 \\ & 7 \times 19 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 16.0 \end{aligned}$	$\begin{array}{r} 9.7 \\ 12.0 \\ \hline \end{array}$	$\begin{array}{r} 26.0 \\ 32.0 \\ \hline \end{array}$
$\begin{aligned} & 1-1 / 4 \\ & 1-3 / 8 \\ & 1-1 / 2 \end{aligned}$	$\begin{aligned} & 7 \times 37 \\ & 7 \times 37 \\ & 7 \times 37 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 22.0 \\ & 26.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 16.0 \\ & 19.0 \end{aligned}$	$\begin{aligned} & 37.0 \\ & 44.0 \\ & 52.0 \end{aligned}$

*These values only apply when the D / d ratio is 5 or greater where:
$\mathrm{D}=$ Diameter of curvature around which the rope is bent.
$\mathrm{d}=$ Diameter of rope body.

Delete TABLE 8-12.

TABLE 8-12.
RATED CAPACITIES FOR CABLE LAID GROMMET HAND TUCKED
$7 \times 6 \times 7 \& 7 \times 6 \times 19$ CONSTRUCTIONS IMPORVED PLOW STEEL GRADE ROPE
7x7x7 CONSTRUCTION GALVANIZED AIRCRAFT GRADE ROPE

CABLE BODY		RATED CAPACITIES, TONS (2,000 lb)		
Dia (Inches)	Constr	Vertical	 Choker	Vertical Basket*
$\begin{aligned} & 3 / 8 \\ & 9 / 16 \\ & 5 / 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \times 6 \times 7 \\ & 7 \times 6 \times 7 \\ & 7 \times 6 \times 7 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 2.8 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 2.1 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 5.6 \\ & 7.6 \end{aligned}$
$\begin{aligned} & 3 / 8 \\ & 9 / 16 \\ & 5 / 8 \end{aligned}$	$\begin{aligned} & 7 \times 7 \times 7 \\ & 7 \times 7 \times 7 \\ & 7 \times 7 \times 7 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 2.6 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 6.9 \\ & 9.0 \end{aligned}$
$\begin{gathered} 5 / 8 \\ 3 / 4 \\ 15 / 16 \end{gathered}$	$7 \times 6 \times 19$ $7 \times 6 \times 19$ $7 \times 6 \times 19$	$\begin{aligned} & 3.9 \\ & 5.1 \\ & 7.9 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.8 \\ & 5.9 \end{aligned}$	$\begin{array}{r} 7.9 \\ 10.0 \\ 16.0 \end{array}$
$\begin{aligned} & 1-1 / 8 \\ & 1-5 / 16 \\ & 1-1 / 2 \end{aligned}$	$7 \times 6 \times 19$ $7 \times 6 \times 19$ $7 \times 6 \times 19$	$\begin{aligned} & 11.0 \\ & 15.0 \\ & 19.0 \end{aligned}$	$\begin{array}{r} 8.4 \\ 11.0 \\ 14.0 \end{array}$	$\begin{aligned} & 22.0 \\ & 30.0 \\ & 39.0 \end{aligned}$
$\begin{aligned} & 1-11 / 16 \\ & 1-7 / 8 \\ & 2-1 / 4 \\ & 2-5 / 8 \end{aligned}$	$\begin{aligned} & 7 \times 6 \times 19 \\ & 7 \times 6 \times 19 \\ & 7 \times 6 \times 19 \\ & 7 \times 6 \times 19 \end{aligned}$	$\begin{aligned} & 24.0 \\ & 30.0 \\ & 42.0 \\ & 56.0 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 22.0 \\ & 31.0 \\ & 42.0 \end{aligned}$	$\begin{aligned} & 49.0 \\ & 60.0 \\ & 84.0 \end{aligned}$
2-5/8	$7 \times 6 \times 19$	56.0	42.0	112.0

*These values only apply when the D / d value is 5 or greater where:
$\mathrm{D}=$ Diameter of curvature around which cable body is bent.
$d=$ Diameter of cable body.

Delete TABLE 8-13.

TABLE 8-13.
RATED CAPACITIES FOR STRAND LAID ENDLESS SLINGSMECHANICAL JOINT IMPROVED PLOW STEEL GRADE ROPE

ROPE BODY		RATED CAPACITIES, TONS ($2,000 \mathrm{lb}$)		
Dia (Inches)	Constr	0 Vertical	 Choker	Vertical Basket*
1/4	6x19 IWRC	0.92	0.69	1.8
$3 / 8$	6×19 IWRC	2.0	1.5	4.1
1/2	6x19 IWRC	3.6	2.7	7.2
5/8	6×19 IWRC	5.6	4.2	11.0
3/4	6×19 IWRC	8.0	6.0	16.0
7/8	6x19 IWRC	11.0	8.1	21.0
1	6×19 IWRC	14.0	10.0	28.0
1-1/8	6x19 IWRC	18.0	13.0	35.0
1-1/4	6×37 IWRC	21.0	15.0	41.0
1-3/8	6×37 IWRC	25.0	19.0	50.0
1-1/2	6×37 IWRC	29.0	22.0	59.0

*These values only apply when the D / d ratio is 5 or greater where:
$\mathrm{D}=$ Diameter of curvature around which rope is bent.
$\mathrm{d}=$ Diameter of rope body.

TABLE 8-14.
RATED CAPACITIES FOR CABLE LAID ENDLESS SLINGSMECHANICAL JOINT
$7 x 7 x 7 \& 7 x 7 x 19$ CONSTRUCTIONS GALVANIZED AIRCRAFT GRADE ROPE
7x6x19 IWRC CONSTRUCTION IMPROVED PLOW STEEL GRADE ROPE

CABLE BODY		RATED CAPACITIES, TONS (2,000 lb)		
Dia (Inches)	Constr	Ω Vertical	 Choker	Vertical Basket*
1/4	$7 \times 7 \times 7$	0.83	0.62	1.6
3/8	$7 \times 7 \times 7$	1.8	1.3	3.5
1/2	$7 \times 7 \times 7$	3.0	2.3	6.1
518	$7 \times 7 \times 7$	4.5	3.4	9.1
3/4	$7 \times 7 \times 7$	6.3	4.7	12.0
5/8	$7 \times 7 \times 19$	4.7	3.5	9.5
3/4	$7 \times 7 \times 19$	6.7	5.0	13.0
7/8	$7 \times 7 \times 19$	8.9	6.6	18.0
1	7x7x19	11.0	8.5	22.0
1-1/8	$7 \times 7 \times 19$	14.0	10.0	28.0
1-1/4	$7 \times 7 \times 19$	17.0	12.0	33.0
3/4	$7 \times 6 \times 19$ IWRC	6.2	4.7	12.0
7/8	$7 \times 6 \times 19$ IWRC	8.3	6.2	16.0
1	$7 \times 6 \times 19$ IWRC	10.0	7.9	21.0
1-1/8	7x6x19 IWRC	13.0	9.7	26.0
1-1/4	7x6x19 IWRC	16.0	12.0	31.0
1-3/8	$7 \times 6 \times 19$ IWRC	18.0	14.0	37.0
1-1/2	7x6x19 IWRC	22.0	16.0	43.0

*These values only apply when the D / d ratio is 5 or greater where:
$\mathrm{D}=$ Diameter of curvature around which cable body is bent.
$\mathrm{d}=$ Diameter of cable body.
(5) When U-bolt wire rope clips are used to form eyes, "Table-8-15 8-2" shall be used to determine the number of clips and the amount of rope to turn back. Spacing of clips shall be uniform between the loop and the dead end. When used for eye splices, the U-bolt shall be applied so that the "U" section is in contact with the dead end of the rope.

TABLE 8-15. WIRE ROPE CLIPS.

Clipsize	Minimum number of elips	Amount of rope to turn back
1/8	z	\|3-1/4
$3 / 16$	2	3-3/4
$1 / 4$	z	-4-3/4
$5 / 16$	2	5-1/4
$3 / 8$	z	6-1/2
$7 / 16$	z	7
1/2	3	11-1/2
9/16	3	12
$5 / 8$	3	12
$3 / 4$	4	18
$7 / 8$	4	19
4	5	26
1-1/8	6	34
1-1/4	7	44
1-3/8	7	44
1-1/2	8	54
1-5/8	8	58
1-3/4	8	61
z	8	71
2-1/4	8	73
2-1/2	9	84
2.3/4	10	100
3	10	106

(F) Natural rope, and synthetic fiber.
(1) General.

When using natural or synthetic fiber rope slings, "Tables 8-16, 817, 818, and 8-19" shall apply. Employers must not use natural-fiber and synthetic-fiber rope slings with loads in excess of the rated capacities (i.e., working load limits) indicated on the sling by permanently affixed and legible identification markings prescribed by the manufacturer.
(2) All splices in rope slings provided by the employer shall be made in accordance with fiber rope manufacturers' recommendations.
(a) In manila rope, eye splices shall contain no less than three full tucks, and short splices shall contain no less than six full tucks (three on each side of the centerline of the splice).
(b) In layed synthetic fiber rope, eye splices shall contain no less than four full tucks, and short splices shall contain no less than eight full tucks (four on each side of the centerline of the splice).
(c) Strand end tails shall not be trimmed short (flush with the surface of the rope) immediately adjacent to the full tucks. This precaution applies to both eye and short splices and all types of fiber rope. For fiber ropes under oneinch diameter, the tails shall project no less than six rope diameters beyond the last full tuck. For fiber ropes one-inch diameter and larger, the tails shall project no less than six inches beyond the last full tuck. In applications where the projecting tails may be objectionable, the tails shall be tapered and spliced into the body of the rope using no less than two additional tucks (which will require a tail length of approximately six rope diameters beyond the last full tuck).
(d) For all eye splices, the eye shall be sufficiently large to provide an included angle of no greater than sixty degrees at the splice when the eye is placed over the load or support.
(e) Knots shall not be used in lieu of splices.

Delete TABLE 8-16.
TABLE 8-16.
MANILA ROPE SLINGS

$\begin{gathered} \text { ROPE } \\ \text { DIA- } \\ \text { METER } \\ \text { Nominal } \\ \text { In } \\ \text { Inches } \end{gathered}$	$\begin{gathered} \text { Nominal } \\ \text { Weight } \\ \text { Per } \\ 100 \mathrm{ft} \\ \text { In } \\ \text { Pounds } \end{gathered}$	Minimum Breaking Strength In Pounds	RATED CAPACITY IN POUNDS (Safety Factor = 5)											
			EYE AND EYE SLING						ENDLESS SLING					
					BASKET HITCH						BASKET HITCH			
					Angle of Rope to Horizontal $90 \mathrm{deg} \quad 60 \mathrm{deg} \quad 45 \mathrm{deg} \quad 30 \mathrm{deg}$						Angle of Rope to Horizontal			
					Angle of Rope to Yertical						Angle of Rope to Vertical			
					0 deg	30 deg	45 deg	60 deg			0 deg	30 deg	45 deg	60 deg
1/2	7.5	2,650	550	250	1,100	900	750	550	950	500	1,900	1,700	1,400	950
9/16	10.4	3,450	700	350	1,400	1,200	1,000	700	1,200	600	2,500	2,200	1,800	1,200
5/8	13.3	4,400	900	450	1,800	1,500	1,200	900	1,600	800	3,200	2,700	2,200	1,600
3/4	16.7	5,400	1,100	550	2,200	1,900	1,500	1,100	2,000	950	3,900	3,400	2,800	2,000
13/16	19.5	6,500	1,300	650	2,600	2,300	1,800	1,300	2,300	1,200	4,700	4,100	3,300	2,300
7/8	22.5	7,700	1,500	750	3,100	2,700	2,200	1,500	2,800	1,400	5,600	4,800	3,900	2,800
1	27.0	9,000	1,800	900	3,600	3,100	2,600	1,800	3,200	1,600	6,500	5,600	4,600	3,200
1-1/16	31.3	10,500	2,100	1,100	4,200	3,600	3,000	2,100	3,800	1,900	7,600	6,600	5,400	3,800
1-1/8	36.0	12,000	2,400	1,200	4,800	4,200	3,400	2,400	4,300	2,200	8,600	7,500	6,100	4,300
1-1/4	41.7	13,500	2,700	1,400	5,400	4,700	3,800	2,700	4,900	2,400	9,700	8,400	6,900	4,900
1-5/16	47.9	15,000	3,000	1,500	6,000	5,200	4,300	3,000	5,400	2,700	11,000	9,400	7,700	5,400
1-1/2	59.9	18,500	3,700	1,850	7,400	6,400	5,200	3,700	6,700	3,300	13,500	11,500	9,400	6,700
1-5/8	74.6	22,500	4,500	2,300	9,000	7,800	6,400	4,500	8,100	4,100	16,000	14,000	11,500	8,000
1-3/4	89.3	26,500	5,300	2,700	10,500	9,200	7,500	5,300	9,500	4,800	19,000	16,500	13,500	9,500
2	107.5	31,000	6,200	3,100	12,500	10,500	8,800	6,200	11,000	5,600	22,500	19,500	16,000	11,000
2-1/8	125.0	36,000	7,200	3,600	14,500	12,500	10,000	7,200	13,000	6,500	26,000	22,500	18,500	13,000
2-1/4	146.0	41,000	8,200	4,100	16,500	14,000	11,500	8,200	15,000	7,400	29,500	25,500	21,000	15,000
2-1/2	166.7	46,500	9,300	4,700	18,500	16,000	13,000	9,300	16,500	8,400	33,500	29,000	23,500	16,500
2-5/8	190.8	52,000	10,500	5,200	21,000	18,000	14,500	10,500	18,500	9,500	37,500	32,500	26,500	18,500

TABLE 8-17.

$\begin{gathered} \text { ROPE } \\ \text { DEA- } \\ \text { METER } \\ \text { Nominal } \\ \text { In } \\ \text { Inches } \end{gathered}$	$\begin{array}{\|c} \text { Nominal } \\ \text { Weight } \\ \text { Per } \\ 100 \mathrm{ft} \\ \text { In } \\ \text { Pounds } \end{array}$	Minimum Breaking Strength In Pounds	RATED CAPACITY IN POUNDS (Safety Factor = 9)												
			EYE AND EYE SLING						ENDLESS SLING						
					BASKET HITCH						BASKET HITCH				
					Angle of Rope to Horizontal 90 deg 60 deg 45 deg 30 deg						Angle of Rope to Horizontal				
									90 deg		60 deg	$45 \mathrm{deg}$	30 deg		
					ngle of Rope to Vertical						Angle of Rope to Vertical				
					0 deg	30 deg	45 deg	60 deg			0 deg	30 de	45 de	60 deg	
1/2	6.5	6,080	700	350	1,400	1,200	950	700		1,200	600	2,400	2,100	1,700	1,200
9/16	8.3	7,600	850	400	700	1,500	1,200	850	1,500	750	3,000	2,600	2,200	1,500	
5/8	10.5	9,880	1,100	550	2,200	,900	1,600	1,100	2,000	1,000	4,000	3,400	2,800	2,000	
3/4	14.5	13,490	1,500	750	3,000	2,600	2,100	1,500	2,700	1,400	5,400	4,700	3,800	2,700	
13/1	17.0	16,150	1,800	900	3,600	3,100	2,600	1,800	3,200	1,600	6,400	5,600	4,600	3,200	
7/8	20.0	19,000	2,100	1,100	4,200	3,700	3,000	2,100	3,800	1,900	7,600	6,600	5,400	3,800	
1	26.0	23,750	2,600	1,300	5,300	4,600	3,700	2,600	4,800	2,400	9,500	8,200	6,700	4,800	
1-1/16	29.0	27,360	3,000	1,500	6,100	5,300	4,300	3,000	5,500	2,700	11,000	9,500	7,700	5,500	
1-1/8	34.0	31,350	500	1,700	7,000	6,000	5,000	3,500	6,300	3,100	12,500	11,000	8,900	6,300	
/4	40	35,625	,000	2,000	7,900	6,900	5,600	4,000	7,100	3,600	14,500	12,500	10,000	7,100	
1-3/16	45.0	40,850	00	2,300	9,100	7,900	6,400	4,500	8,200	4,100	16,500	14,000	12,000	8,200	
1-1/2	55.0	50,350	5,600	2,800	11,000	9,700	7,900	5,600	10,000	5,000	20,000	17,500	14,000	10,000	
1-5/8	68.0	61,750	6,900	3,400	13,500	12,000	9,700	6,900	12,500	6,200	24,500	21,500	17,500	12,500	
1-3/4	83.0	74,100	8,200	4,100	16,500	14,500	11,500	8,200	15,000	7,400	29,500	27,500	21,000	15,000	
2	95.0	87,400	9,700	4,900	19,500	17,000	13,500	9,700	17,500	8,700	35,000	30,500	24,500	17,500	
2-1/8	109.0	100,700	11,000	5,600	22,500	19,500	16,000	11,000	20,000	10,000	40,500	35,000	28,500	20,000	
2-1/4	129.0	118,750	13,000	6,600	26,300	23,000	18,500	13,000	24,000	12,000	47,500	41,000	33,500	24,000	
2-1/2	149.0	133,000	15,000	7,400	29,300	25,500	21,000	15,000	26,500	13,500	53,000	46,000	37,500	26,500	
2-5/8	168.0	153,900	17,100	8,600	34,000	29,500	24,000	17,000	31,000	15,500	61,500	53,500	43,500	31,000	

TABLE 8－18．

000＇92	000＇L8	$000{ }^{\circ} \mathrm{G} \mathrm{t}$	000＇z9	000＇\＆	000＇92	009＊ Fl	$009{ }^{\text {c }}$	$000 \times \mathrm{sz}$	000＇62	0072	009＇ธI	091081	0．90z	8／9－7
000＇ 83	000＇ 8ε	000＇0才	$00{ }^{\text {c }} 9{ }^{\text {¢ }}$	009＇LI	$000 \times 8 z$	000＇\＆I	000 81	$009^{\prime} \mathrm{zz}$	000＇92	00\％＊9	$000{ }^{\text {c }}$ I 1	006＇9LI	$0 \cdot 181$	7／L－7
009＊07	$000{ }^{6} 68$	000＇98	$00{ }^{\text {c }} 0{ }^{\circ}$	000＇01	009＇03	009＇ı	$000{ }^{\text {c }} 9$	009＇61	$009^{\prime} \mathrm{zz}$	002＇s	$00 \mathrm{c}^{\text {c }}$ LI	099＇101	0.291	¢／L－z
$009^{\prime} L I$	$009^{\text {¢ }}$	$009^{*} 08$	000×8	002＇8	0096	00L＇6	$0099^{\text {a }}$ ¢	$000{ }^{\circ} \mathrm{LI}$	009\％ 61	006＊${ }^{\text {\％}}$	00L＇6	00¢ 28	0.981	8／L－7
000＇¢t	$009{ }^{\text {c }}$ \％	009‘9\％	00908	009＇L	$000{ }^{\text {c }}$ ¢	00ヶ＇8	$000{ }^{\text {¢ }} \mathrm{zI}$	009＊「	$000{ }^{\circ} \mathrm{LI}$	008＇\％	00ヶ「8	000‘9	0.811	\％
000＇\＆	000＇81	$00 c^{4} \mathrm{zz}$	000＇92	008＇9	$000 \times \varepsilon$ I	007＇L	$000{ }^{\circ} \mathrm{O}$	$009^{\prime} \mathrm{z}$	009＇ャ	009＇8	007＇2	0ヶマ＇を9	0.86	\＄／8－ז
000＇IL	$009^{\text {cg }}$	000＇61	$00{ }^{4} \mathrm{~L}$	$00{ }^{\text {¢ }}$ ¢	$000{ }^{\text {c }}$ II	000＊9	0098	00ヵ゙01	000＇zI	$000{ }^{\circ} \mathrm{E}$	000＇9	091＊\％	078	8／9－I
$006{ }^{\prime} 8$	$009^{\prime} 7 \mathrm{~L}$	$000^{\circ} \mathrm{g}$ I	$000{ }^{\circ} 81$	007＇${ }^{\text {d }}$	$006{ }^{\prime}$	006＇চ	$000{ }^{\circ} \mathrm{L}$	009＇8	$006{ }^{6}$	$00 \mathrm{c}^{\prime} \mathrm{z}$	006＇\％	09巾＇切	8.99	Z／L－I
0014	000＇01	$009^{\prime} \mathrm{zl}$	009 ¢ ${ }^{\text {c }}$	009＇8	$001 / 2$	000＇8	009＇s	0069	$006 ' L$	$000{ }^{\text {\％}}$	000＇ъ	989＇98	9 q 9	91／g－I
$008{ }^{4} 9$	006×8	000 ＇II	$009^{\prime} z 1$	007＇8	008＇9	009＊8	$000{ }^{\circ} \mathrm{s}$	000×9	$000{ }^{\circ} \mathrm{L}$	008＇t	009＇8	079＇t	89\％	t／I－I
009＇9	$006{ }^{2}$	002＇6	000 ＇II	008＇\％	$009{ }^{\text {c }}$ g	001 ＇ 8	00 ¢ ${ }^{\text {¢ }}$	$00{ }^{\text {¢ }}$ ¢	008＇9	009＇I	001＇g	980＇87	$0 \cdot 0{ }^{\circ}$	8／I－I
008＇ti	006＇9	007＇8	002＇6	$00 \square^{\prime} \mathrm{Z}$	008＇¢	00L＇\％	$008{ }^{\text {＇}}$ ¢	002＇i	00巾 ${ }^{\text {c }}$ c	008＇I	00L＇z	9\％でゅを	$\mathrm{q}^{\prime} \downarrow \varepsilon$	9T／L－I
007＇t	$006{ }^{\text {c }}$	$008{ }^{2}$	$007{ }^{\text {c }} 8$	$00{ }^{1} \mathrm{z}$	007＇${ }^{\text {¢ }}$	008%	008 ＇¢	$000{ }^{\circ}$	009＇จ	008＇ı	008＇z	006＊03	¢ 0 08	1
00ヵ＇\＆	008＊	006＇g	008×9	002＇t	$00 \nabla^{\prime}$ ¢	006＇t	00L＇z	$008 \times$	008 ＇8	096	$006{ }^{\text {c }}$	00142	$0 \cdot 98$	8／L
$006{ }^{\text {c }}$	008＊	001＇s	006＇s	009＇I	$006{ }^{\text {c }}$	009＇1	008%	008%	008＇8	008	$009{ }^{\text {c }}$	98L＇ti	0 －1\％	91／81
00ヵ＇6	00『＇\＆	001＇\％	008＇7	007＇I	00ヵ＇\％	$008^{\text {c }}$	$006{ }^{\text {＇I }}$	$008{ }^{\prime} \%$	$009{ }^{\prime}$	099	$008{ }^{\text {c }}$	9L8＇II	9.21	¢／8
006＇t	001＇z	$008{ }^{\text {¢ }} 8$	008＇8	096	$006{ }^{\text {＇t }}$	001＇t	$009{ }^{\text {a }}$ I	$008{ }^{\text {c }}$	001 ＇z	0 g 9	001＇ı	009＇6	$0 \cdot 81$	8／9
009＇t	008＇z	009%	$000{ }^{\prime} \mathrm{E}$	OGL	009＇t	098	$00 z^{\prime} \mathrm{I}$	0094	002×1	007	098	009＇L	7．01	91／6
008＇I	00L＇1	001＇\％	00ヶ＇z	009	008＇t	002	096	00 ＇r $^{\text {c }}$	00t＇t	098	002	080＇9	08	\％／I
$\begin{array}{\|r\|} \hline 8 \supset p \\ \hline \end{array}$		sop 0ε 	$\begin{aligned} & \hline \operatorname{sop} 0 \\ & \text { uv } \end{aligned}$	$\begin{aligned} & \text { 폴 } \\ & 0 \\ & 0 \end{aligned}$			$\begin{gathered} \operatorname{sap} \mathrm{q} \\ \text { ind } \end{gathered}$	səp 0ε oy 10 ə	$\begin{aligned} & \text { 8op } 0 \\ & \text { fuv } \end{aligned}$	$\begin{aligned} & \text { 봅 } \\ & \text { 웅 } \end{aligned}$	药	${ }^{\text {spunod }}$ UI 418uan S รи！уваля щпш！บ！		
$\begin{gathered} \text { Sop } 08 \\ \text { [equ } \end{gathered}$		$\begin{gathered} \text { 8əp } 09 \\ \text { odoy jo } \end{gathered}$	$\text { sәр } 06$ suv				$\begin{gathered} \text { 8əp } 9 \\ \text { z! } 19 \mathrm{H} \end{gathered}$	sop 0 doy ${ }^{\circ}$	Зəр 06 なuv					
HOLIH LSYSVG						HOLIH LGYSVY								
ONITS SSGTIGNG						ONITS GXA ONV GXA								

(G) Synthetic webbing (nylon, polyester and polypropylene).
(1) The employer shall have each synthetic web sling marked or coded to show:
(a) Name or trademark of manufacturer.
(b) Rated capacities for the type of hitch.
(c) Type of material.
(2) Rated capacity shall not be exceeded.
(H) Shackles and hooks.
(1) "Table 8-20" shall be used to determine the safe working loads of various sizes of shackles, except that higher safe working loads are permissible when recommended by the manufacturer for specific, identifiable products, provided that a factor of safety of no less than five is maintained. Employers must not use shackles with loads in excess of the rated capacities (i.e., working load limits) indicated on the shackle by permanently affixed and legible identification markings prescribed by the manufacturer.
(2) The manufacturer's recommendations shall be followed in determining the safe working loads of the various sizes and types of specific and identifiable hooks. All hooks for which no applicable manufacturer's recommendations are available shall be tested to twice the intended safe working load before they are initially put into use.

Delete TABLE 8-20.

Table 8-20. SAFE WORKING LOADS FOR SHACKLES
[In tons of 2000 pounds]

Effective: 10/12/2014
Five Year Review (FYR) Dates: 07/28/2014 and 10/01/2019
CERTIFIED ELECTRONICALLY
Certification
10/02/2014
Date

Promulgated Under:
Statutory Authority:
Rule Amplifies:
Prior Effective Dates:
119.03
4121.12, 4121.121, 4121.13, Ohio Const. Art. II, Sec. 35
4121.13

11/1/79, 1/1/11

[^0]: (1) Rating of multileg slings adjusted for angle of loading measured as the included angle between the inclined leg and the vertical.
 (2) Rating of multileg slings adjusted for angle of loading between the inclined leg and the horizontal plane of the load.
 *Other grades of proof tested steel chain include Proof Coil, BBB Coil and Hi-Test Chain. These grades are not recommended for overhead lifting and therefore are not covered by this code.

